Gerontology Explorer
База знаний по геронтологии
Форум Рейтинг способов продления жизни Новые материалы Email-рассылка: информация о новых материалах на сайте RSS-канал: информация о новых материалах на сайте Поиск Указатель Экспорт, импорт

     
2.4. Возраст и репарация ДНК

 

Одной из причин накопления повреждений ДНК с возрастом может быть снижение эффективности систем ее репарации. В ряде работ установлена положительная корреляция между продолжительностью жизни вида и скоростью репарации ДНК, поврежденной ультрафиолетовым светом или ионизирующей радиацией (Burkle, 2002). Большой интерес представляют данные о видовых различиях в специфической репарации ДНК, поврежденной алкилирующими агентами, в частности о различиях в скорости удаления из ДНК промутагенного основания О6-метилгуанина. Оказалось, что печень человека примерно в 10 раз быстрее удаляет О6-метилгуанин, чем печень крысы. Значительно быстрее О6-метилгуанин элиминировался также из лимфоцитов и фибробластов человека, чем из аналогичных тканей мыши (Likhachev, 1990). Эти наблюдения позволяют предполагать меньшую чувствительность человека к канцерогенному действию нитрозосоединений.

 

Другой причиной различий в продолжительности жизни животных разных видов могли бы быть различия в толерантности к молекулярным повреждениям. Ж. А. Медведев (Medvedev, I972) предположил, что повторность генов (множественность копий) может быть важным фактором долголетия, поскольку повреждения уникальных генов более вероятно будут способствовать их суммации и преждевременному старению. Однако R. Cutler (1991) не обнаружил четкой связи между числом повторов генов и долголетием или между избыточностью рибосомальных генов и скоростью старения. Вместе с тем, рассматривая гены, служащие матрицами для синтеза мРНК в мозге человека, коровы и мыши, он нашел, что в среднем избыточность этих генов у человека больше, чем у коровы, а у коровы больше, чем у мыши. Представленные данные позволяют заключить, что у долгоживущих видов механизмы, защищающие генетический аппарат клетки от повреждений, по-видимому, более совершенны, чем у короткоживущих видов.

 

Большой интерес представляют данные о возрастных изменениях репарации различных типов повреждений ДНК. В исследованиях А. И. Газиева и др. (1981) было показано, что в клетках старых (18-22 мес.) мышей линии А/Не и СЗН/Sn уровень неингибированного оксимочевиной синтеза (репаративный синтез) в 2 раза ниже, чем у молодых (1.5-2 мес.). При -облучении мышей разного возраста репаративный синтез увеличивается в 2-3 раза по сравнению с контролем. Авторы установили, что дело не в снижении активности ферментов репарации ДНК, поврежденной радиацией, а в степени доступности для ферментов этих повреждений ДНК в составе хроматина клеток. Об этом же свидетельствует и возрастное снижение релаксируемости нуклеоида ядер печени мышей при сравнении молодых и старых -облученных животных (Газиев и др., 1981). При амплификации фрагментов транскрибируемых ( -актин, р53) и нетранскрибируемых (тяжелой цепи иммуноглобулина IgE) генов в ДНК мозга и селезенки у-облученных и необлученных крыс в возрасте 2 и 28 месяцев, было установлено, что степень амплификации фрагментов этих генов в ДНК старых крыс была существенно ниже, чем у молодых крыс. Репарация повреждений ДНК в мозге крыс разного возраста не отличалась в течение 30 мин после облучения (быстрая фаза репарации), но была существенно замедлена в последующие 5 ч (медленная фаза репарации) в мозге старых крыс (Ploskonosova et al., 1999).

 

Было показано, что радиационная повреждаемость ДНК стволовых клеток кишечного эпителия мышей разных линий и возраста примерно одинакова, однако скорость репарации этих повреждений с возрастом снижается. Способность диплоидных фибробластов человека к репарации индуцированных -излучением однонитевых разрывов ДНК достоверно снижается с увеличением возраста донора (Anisimov, 1987). В ряде работ оценивалось влияние возраста донора на интенсивность внепланового синтеза ДНК в клетках человека, подвергнутых in vitro УФ-облучению. В. Lambert et a). (1979) нашли отрицательную корреляцию между возрастом и величиной внепланового синтеза ДНК (ВСД) в лейкоцитах периферической крови 58 здоровых субъектов 13-94 лет. Авторы отметили сильные индивидуальные колебания величины ВСД Было обнаружено также ослабление индуцированного УФ-светом репаративного синтеза в лимфоцитах человека с возрастом и в глубокой старости. Было установлено, что с возрастом донора существенно увеличивается накопление разрывов в ДНК фибробластов человека при кратковременном воздействии низкочастотного электромагнитного поля (50 Гц, 1 мТ), что свидетельствует о возрастном снижении эффективности репарации ДНК, поврежденной этим воздействием (Ivancsits et aL, 2003). В табл. 15 суммированы данные о влиянии возраста на эффективность репарации ДНК при различных типах повреждений. Можно видеть, что репарация ДНК зависит как от вида животных, типа повреждающего агента и вызываемого им повреждения, так и от ткани мишени.

 



 

Большинство повреждений ДНК репарируется, но не все. Так, у крыс происходит 105 окислительных повреждений ДНК в день в расчете на клетку. Когда скорость репарации не достигает скорости индукции повреждений, происходит увеличение спонтанных повреждений ДНК с возрастом (Vijg, 2000). Точная оценка способности организма восстанавливать специфические повреждения затруднена и часто бывает ошибочной, В большинстве исследований возможного снижения репаративной активности ДНК с возрастом были использованы способы, с помощью которых оценивается фаза синтеза ДНК при эксцизионной репарации. Главный вывод из этих работ, выполненных преимущественно на культуре клеток, состоит в том, что эффективность репаративных систем ДНК не снижается с возрастом (Likhachev, 1990). Однако нельзя исключить, что при старении репарационные системы ДНК становятся более подвержены ошибкам, приводящим к усилению индукции мутаций (Anisimov et al., 1993; Vijg, 2000). В любом случае определенная степень несовершенства является главной чертой системы репарации ДНК, на что указывало фактическое накопление как повреждений ДНК, так и изменение последовательности ДНК.

 

 

См. также:

    2.1. Метилирование ДНК и старение

    2.2. Гликозилирование белков и ДНК

    2.3. Возраст и частота мутаций

    2.5. Изменения структуры и функции генов при старении

    2.6. Роль окислительного стресса в старении

 

 Обсудить на форуме

 

Изменен: 3.11.09

Узлов всего: 3 914. Узлов на вкладке: 1 617. Узлов в узле: 0. Последнее обновление: 20.01.13 19:08

Gerontology Explorer ©, 2007 - 2013. Все права защищены. Для правообладателей Обратная связь

Хостинг от uCoz