Gerontology Explorer
База знаний по геронтологии
Форум Рейтинг способов продления жизни Новые материалы Email-рассылка: информация о новых материалах на сайте RSS-канал: информация о новых материалах на сайте Поиск Указатель Экспорт, импорт

     
Регуляция транскрипции и трансляции у бактерий

 

Как осуществляется регуляция синтеза отдельных белков, мы рассмотрим на примере относительно просто устроенной бактериальной клетки. Известно, что, пока в питательную среду, в которой живет бактерия, не добавлен сахар, в клетке нет ферментов, необходимых для его расщепления. Бактерия не тратит энергию АТФ на синтез белков, ненужных ей в данный момент. Однако через несколько секунд после добавления сахара в клетке синтезируются все ферменты, последовательно превращающие его в продукт, необходимый для жизнедеятельности бактерий. Вместо сахара может быть другое соединение, появление которого в клетке «включает» синтез ферментов, расщепляющих его до конечного продукта. Соединения, которые в клетке подвергаются действию ферментов, называются субстратами.

 

Ферменты, участвующие в одной цепи превращения субстрата в конечный продукт, закодированы в расположенных друг за другом генах одного оперона. Между этими генами, называемыми структурными (так как они определяют структуру ферментов), и промотором - посадочной площадкой для полимеразы есть особый участок ДНК - оператор. Он так называется потому, что именно с него начинается операция - синтез иРНК. С оператором взаимодействует специальный белок - репрессор. Пока репрессор «сидит» на операторе, полимераза не может сдвинуться с места и начать синтез иРНК (рис. 24).

 


Рис. 24. Схема регуляции транскрипции и трансляции.

П - промотор; О - оператор; СГ - структурный ген; Реп - белок-репрессор; Ф - фермент.

 

Когда в клетку попадает субстрат А, для расщепления которого нужны ферменты Ф-1, Ф-2, Ф-3, закодированные в структурных генах оперона А, одна из молекул субстрата связывается с репрессором, мешающим считывать информацию об этих ферментах. Репрессор, связанный молекулой субстрата, теряет способность взаимодействовать с оператором, отходит от него и освобождает дорогу полимеразе. Полимераза синтезирует иРНК, которая обеспечивает на рибосомах синтез ферментов, расщепляющих субстрат А. Как только последняя молекула субстрата А будет преобразована в конечный продукт, освобожденный ре-прессор возвратится на оператор и закроет путь полимеразе. Транскрипция и трансляция прекращаются; иРНК и ферменты, выполнив свои функции, расщепляются соответственно до нук-леотидов и аминокислот.

 

Другой оперон, содержащий группу генов, в которых закодированы ферменты для расщепления субстрата Б, остается закрытым до поступления в клетку молекул этого субстрата (рис. 24). В ряде случаев конечные продукты одних цепей превращений могут служить субстратами для новых биохимических конвейеров. Не каждый оперон имеет несколько структурных генов, есть опероны, содержащие лишь один ген. Количество структурных генов в опероне зависит от сложности биохимических превращений того или иного субстрата.

 

 

См. также:

    Регуляция у высших организмов

    Генная инженерия

    Клеточная инженерия. Биотехнология

 

 Обсудить на форуме

 

Изменен: 6.10.09

Узлов всего: 3 914. Узлов на вкладке: 378. Узлов в узле: 0. Последнее обновление: 20.01.13 19:06

Gerontology Explorer ©, 2007 - 2013. Все права защищены. Для правообладателей Обратная связь

Хостинг от uCoz